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Consider system dynamics of the form

& = fl@)+g(@)u. (1)

where & = [q, q]*, and an output of the form

y = h(q), (2)

which depends only on configuration variables. Because setting h(q) can only provide constraints on the M
actuated degrees of freedom, there exists a smooth real-valued function 6(q) for the (N — M) unactuated
degrees of freedom such that

[h(q);0(q)] : Q = RN (3)

is a diffeomorphism onto its image. Then the corresponding zero dynamics manifold 7Q is a smooth
2(N — M)-dimensional embedded submanifold of 7'Q, defined as

Z={xeTQly=h(xz)=0,9y = Lyh(x) =0} (4)

Note that because
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= L?h(q, q)+ LyLsh(q)u,

where L stands for the Lie derivative, the relative degree of the output is at least two and thus ¢ = 0 is
needed in the definition of zero dynamics. The corresponding feedback control w can be decomposed into
two parts as

u=u"+v, (7)

where u* is the term that renders Z invariant, i.e. y = 0, defined as
u*(z) = —(LgLsh(q)) ™ Lih(q, ) (8)

and v is the term that ensures the output y and its derivative vanish to zero under the designed control
law. A simple example of the control law would be a linear (PD) controller designed in the form

v = —(Lgth(Q))_l[%KDth(Q) + eizKPh((I)]. (9)
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To simplify the zero dynamics, further coordinate transformation is performed. Set
h(q)} [m]
P(q) = = , 10
(Q) {0( q) £, ( )

which is a coordinate transformation on O, thus
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is a coordinate transformation on 7°Q, the inverse transformation of which is

{q] @ '(n,, ¢

1=1,02 (ny|]|. (12)
a ( dq ) &
Note that the above relationship has used the following derivation,
7, 4 dd 0P . , 0P, ["72}
{52] {51] dt dq 1 1 ( dq ) & ( )

Using the new coordinates [n;; &1;M4; &5, the system dynamics become

M L¢h
&1 _ Ly0
fy| L3R+ LyLshu| (14)
£2 L%O + LgLfOu
and the zero dynamics become
1_J=7h=0,y=771=772=0 ‘
§ = Ly0 - glsza (15)
Yy="mn,= Lfch + LgLshu* =0 & = L?O + LgLs0u

&, =L%0+ LyLs0u

Because the columns of g(a) are involutive, the inversion of the decoupling matrix in the zero dynamics
can be avoided by using a smooth scalar function ~y, such that
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is a valid coordinate transformation and
Ly =0. (17)

Additionally, it can be proved that 4 can be explicitly computed to be the last (N — M) entry of D(q)q,
hence it can be assumed that

(g, q) = 70(9)q. (18)



The corresponding inverse transformation thus becomes
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Consequently, the system dynamics become
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and the zero dynamics become
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where the corresponding inverse transformation becomes
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To relate the zero dynamics to the original system dynamics, further derivation can be conducted. Set
the last (N — M) rows of matrices and vectors D, C, G and q as Dy, Cy;, Gy and q,,;. Then we can

have
oK

55" (23)

7(q:4) = 7o(@)g = Dng = (

Therefore, the zero dynamics become
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